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Given that the e�ectiveness of COVID-19 vaccines and other therapies is greatly

limited by the continuously emerging variants, non-pharmaceutical interventions

have been adopted as primary control strategies in the global fight against the

COVID-19 pandemic. However, implementing strict interventions over extended

periods of time is inevitably hurting the economy. Many countries are faced

with the dilemma of how to take appropriate policy actions for socio-economic

recovery while curbing the further spread of COVID-19. With an aim to solve

this multi-objective decision-making problem, we investigate the underlying

temporal dynamics and associations between policies, mobility patterns, and

virus transmission through vector autoregressivemodels and the Toda-Yamamoto

Granger causality test. Our findings reveal the presence of temporal lagged e�ects

and Granger causality relationships among various transmission and human

mobility variables. We further assess the e�ectiveness of existing COVID-19

control measures and explore potential optimal strategies that strike a balance

between public health and socio-economic recovery for individual states in the

U.S. by employing the Pareto optimality and genetic algorithms. The results

highlight the joint power of the state of emergency declaration, wearing face

masks, and the closure of bars, and emphasize the necessity of pursuing tailor-

made strategies for di�erent states and phases of epidemiological transmission.

Our framework enables policymakers to create more refined designs of COVID-

19 strategies and can be extended to other countries regarding best practices in

pandemic response.
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1. Introduction

Since the coronavirus disease 2019 (COVID-19) was initially

detected in December 2019, a novel coronavirus designated as the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

has rapidly spread across the world and led to a global pandemic

(1). Despite increasingly more people getting vaccinated every

single day, the world is still struggling to combat the emerging

more contagious COVID-19 variants and has witnessed wave after

wave of the pandemic here and there. To contain the COVID-

19 pandemic, non-pharmaceutical interventions (NPIs) have been

widely used as key weapons in some countries that were impacted

heavily early on with satisfying effects (2). For instance, the world’s

first stringent COVID-19 lockdown sparked inWuhan, the original

epicenter of the pandemic. Specifically, China implemented a

76-day travel ban to and from the city and initiated nationally

coordinated measures to address the pandemic’s impact until the

first wave of the pandemic was effectively contained in the country

(3). Singapore is another country that adopted aggressive strategies

and maintained a low casualty rate (0.15%) compared to the global

average (1.38%) (4).

Besides making striking achievements in real-world settings,

the effectiveness of COVID-19 NPIs has also been extensively

studied in the literature. Among them, a large body of

research was targeted at the epidemiological implications of

NPIs. Utilizing compartmental models, scholars simulated and

predicted the effects of NPIs on multiple epidemic indicators,

including infections (2, 3, 5–10), deaths (2, 7–9, 11), the

reproduction number (2, 3, 8, 12), and demand for hospital

services (5, 9). Touching on similar themes, another line of

research focused more on quantifying the effects of NPIs on

mobility (13–15) and explored the relationship between human

movements and COVID-19 transmission (6, 16–18). Apart

from characterizing the unfolding of the pandemic from an

epidemiological perspective, there are also studies investigating the

impact of NPIs from various angles covering economic contraction

(19–22), social issues (23, 24), andmental health (25–28). Adopting

a multi-objective perspective, some studies have concentrated

on optimizing the socio-economic cost-effectiveness of pandemic

mitigation strategies in different countries (29–31). However, these

studies did not address the question from the perspective of

human mobility.

Some key findings derived from the current state of knowledge

can be summarized as follows: (1) Implementing appropriate

NPIs is crucial in curbing the spread of the virus (2, 17, 18);

(2) The effectiveness of individual interventions alone is often

limited, necessitating the combined use of multiple NPIs (7,

32–34); (3) The impact of NPIs on disease burden exhibits

nonlinearity (35); (4) Fixed NPI strategies may be less effective

compared to those with time-varying adjustment mechanisms

(36); and (5) There is an interplay between NPIs and vaccination

strategies, particularly concerning highly transmissible variants

of concern. Hence, optimizing and tailoring NPIs holds strong

potential for reducing both transmission and the clinical burden

of the disease.

The encouraging precedents and research basis above

demonstrate the role that NPIs can play in controlling the

COVID-19 and offer valuable references for other affected

regions to handle the spiraling outbreak. However, as time

goes by, the situation has become further complicated and

highlighted some limitations of the current literature. First,

the emphasis of many previous studies is on the pandemic

simulation modeling of COVID-19 for more accurate forecasts

without a thorough discussion of the relationships between

NPIs, human mobility, and virus transmission that are deeply

intertwined. In addition, given that the core concern of handling

the ongoing COVID-19 pandemic has shifted from containing

its spread to restoring the social and economic order in the

new normal from a long-term perspective, particular attention

should be paid to multi-objective thinking in the design of

policy strategies. Moreover, most of the above-mentioned

successes were achieved by imposing harsh measures at the

beginning of the pandemic, still, opinions are divided sharply

on how to devise optimal policy frameworks of NPIs when the

population are partly vaccinated against the COVID-19 among

different countries.

To contribute in this direction, we choose the U.S. as the

focus in the study due to its decentralized decision-making system,

which leads to the implementation and enforcement of NPIs highly

variable in both time and space across the country with various

circumstances for discussion. Using the COVID-19 policy dataset

along with epidemiological and mobility data aggregated at the

state level, we propose a methodological framework to quantify

the underlying relationships between mobility and key measures

of population-level transmission in the context of the COVID-19

pandemic both before and after the vaccines became available. We

further evaluate the effectiveness of the current combinations of

NPIs applied in each state and identify new optimal strategies that

can well balance the public health and socio-economic impacts in

the fight against COVID-19. Finally, we investigate the similarities

and differences across states and phases to provide new insights into

the spatio-temporal dynamics for pandemic control. The results

of this study provide valuable insights for policymakers to gain

a deeper understanding of the ever-changing landscape of the

pandemic, enabling them to identify more effective and adaptable

solutions that can respond to evolving needs and circumstances.

2. Materials and methods

2.1. Datasets and preliminary observations

To gain a comprehensive understanding of each state

government’s response to COVID-19, we utilize the COVID-19

U.S. State Policy Database (37). This database enables us to consider

nine prominent NPIs, namely: Declaration of a state of emergency

(P1), Mandatory face mask usage in workplaces (P2), Closure

of child care facilities (P3), Closure of restaurants (P4), Closure

of movie theaters (P5), Closure of non-essential businesses (P6),

Implementation of stay-at-home orders (P7), Closure of bars (P8),

and Closure of gyms (P9). The temporal and geographical adoption

of these policy responses across U.S. states is visually presented

in Figure 1. This work covers the study period spanning from

February 24, 2020, to August 18, 2021. We further divide the

observation period into two main phases according to when the

lockdown restrictions and COVID-19 vaccine distribution started
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FIGURE 1

Implementation of anti-contagion policies in response to the COVID-19 over time and space in the United States. (A) Percentage of states with the

COVID-19 policies being enacted over time. Two vertical dashed lines represent the start dates of COVID-19 policy deployment and vaccine

distribution, respectively. (B) Maps of number of NPIs implemented by the states on three representative dates. April 19, 2020 represents the period

with the most stringent lockdowns. December 13, 2020 is the day before COVID-19 vaccines were administered in the U.S.. August 18, 2021 is the

last day of the observation period.

in the country. Some general patterns we find include: (1) most

states rolled out the strictest lockdown measures in April 2020 to

fight against the first wave and gradually rolled back the restrictions

as the curve of infections started to flatten; (2) to control the

subsequent waves in late June and mid-November 2020, NPIs were

reimplemented, however, the number of states participated is much

smaller than previously and; (3) since the COVID-19 vaccines were

administered, the NPIs were gradually lifted in most states.

Apart from the database of NPIs, we also employ daily COVID-

19 case data from theNewYork Times (38) and aggregatedmobility

data from Unacast (39) to first draw a comprehensive comparison

of the temporal variations in virus transmission, mobility patterns,

and policies during the COVID-19 outbreak. Here, two mobility

metrics utilized are relative percentage changes in visits to non-

essential venues (VD) and average travel distance (TD) compared

to the corresponding day of the week prior to the COVID-19

outbreak for a given date. Two COVID-19 case variables include

daily new cases (NC) and deaths (ND). Specifically, we map

the state government policy actions against these variables as

well as the instantaneous reproduction number (Rt) estimated by

the susceptible-exposed-infectious-recovered-susceptible (SEIRS)

epidemic model (40) (Supplementary material 3). Here, Rt is

a key indicator to monitor the real-time transmissibility of

the virus and to estimate the impact of local NPIs on the

epidemic. The compartmental model SEIRS is fitted with publicly

available COVID-19 case data as mentioned (38). Disease-specific

parameters in the model were derived from the recent literature,

including a mean incubation period of 5.2 days (95% confidence

interval [CI] 4.1–7.0) (41), an average recovery time of 8 days (42)

and the mean time to death from the onset of 17.8 days (95%

CI 16.9–19.2) (43). In addition, patients are assumed to develop

temporal immunity of 180 days, after recovering from the initial

infection of the virus (44).

2.2. Temporal lagged relationship analysis

Based on the preliminary observations, we further explore

multiple temporal dynamic relationships between transmission

and mobility variables in a bivariate setting by using vector

autoregressive models (45) and the Granger causality tests (46).

Here we also employ a sub-period analysis to explore how these

variables and the relationships between them changed over time

before and after the administration of the COVID-19 vaccines. For

clarity, we will take the tests between Rt and VD as an example to

illustrate in detail how the techniques are employed below.

Vector autoregression (VAR) (45) is a widely used statistical

method for multivariate time series analysis. Granger causality
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analysis (46) was initially developed in econometrics as a technique

for investigating the directed interactions between time-series data

(47). This statistical concept of causality is based on the prediction

that a time series x (VD) Granger causes another time series y (Rt)

if the autoregressive forecast of y can be better explained when the

past information from x is considered (48). After determining the

maximum order of integration (d) and optimal time lag length (m)

for Rt and VD (Supplementary material 5), we establish bivariate

augmented VAR models for the two phases in each state, based

on the idea of the Toda-Yamamoto Granger causality test (49)

(Supplementary material 6) as follows:

yt = γ +

m+d
∑

i=1

αiyt−i +

m+d
∑

i=1

φixt−i + εt (1)

where yt denotes the value of the time series y at time t, i is the

length of the lag-timemoving window, αi and φi are the parameters

to estimate, ǫt refers to the white noise residual. The variables of x

and y can be interchanged to test for the Granger causality in the

other direction.

2.3. Multiple linear regression analysis

Multiple linear regression analysis is then employed to assess

the association between policy types and COVID-19 transmission

as well as human mobility changes. Specifically, for each state, we

build two multiple linear regression models, in which independent

variables are policy types [p1, p2, . . ., pk], while the continuous

dependent variables are vt and Rt
′

, respectively. Here, Rt
′

denotes the temporal lagged reproduction number for date t with

individualized temporal relationships between vt and Rt in each

state. The assumption here is that the changes in human mobility

are visible on the same date when the NPIs are issued, while Rt
′

is

determined by the temporal lagged associations between mobility

and the spread of the coronavirus investigated using VAR model

with Granger causality test. For instance, since there is a significant

Granger causality relationship discovered from Rt to vt with a lag

of m = 2 in California during phase 1 (Supplementary Table 5),

the corresponding Rt
′

for vt is equal to Rt−2. This operation

applies to the following two Pareto analysis tasks, the evaluation

of existing policy strategies and the design of new policy solutions

for each state. To fulfill the second task, the processed data is used

to fit multiple linear regression models for each phase in a state

as follows:

Rt
′

= λ0 + λ1p1 + λ2p2 + · · · + λkpk (2)

vt = η0 + η1p1 + η2p2 + · · · + ηkpk (3)

where k is the number of policy types. The estimated

parameters of [λ0, λ1, λ2, . . ., λk] and [η0, η1, η2, . . ., ηk] are used for

the prediction of R̂t and v̂t in the generation process of new optimal

policy strategies.

2.4. Pareto optimality for COVID-19 policy
assessment and design

Next, we elaborate Pareto approaches for the assessment and

optimal design of the NPIs in each state. In multi-objective

optimization problems, the Pareto-efficient state is achieved if there

is no other solution that can bring improvement to one of the

objectives without showing degradation in another objective (50).

According to this, our optimization problem can be defined as a

vector function f that maps a vector of policy decision variables p

to a tuple of two objectives h as follows:

minimize: f (p) = min
{

w1f1(p),w2f2(p)
}

subject to: p = (p1, p2, ..., pk) ∈ P

h = (h1, h2) ∈ H

(4)

where P is the policy space and H is the objective space.

In our case, the optimization goal is to strike a delicate balance

between the control of COVID-19 and the recovery of socio-

economic vitality, which are indicated specifically by Rt and VD,

respectively. These two variables are chosen because we consider

the estimated Rt a more comprehensive metric to measure the

transmissibility of the pandemic and visitation frequency a more

appropriate indicator of socio-economic vitality. Based on this

assumption, one of the objectives of our research task is tominimize

the reproduction number of the virus fr(p). In the meanwhile,

the value of visitation metric fv(p) is expected to be maximized.

Accordingly, we set the values of w1 and w2 to 1 and -1. Consider

two policy decision vectors a, b ∈ P. The policy decision vector a is

said to dominate b if their objective vectors f (a) and f (b) satisfy:

fr(a) 6 fr(b) ∧ fv(a) > fv(b),

or fv(a) > fv(b) ∧ fr(a) < fr(b)
(5)

The set of all the policy decision vectors that are not dominated

by any other generates the Pareto optimal set, which provides

policymakers with a group of optimal solutions to make a well-

informed decision that balances the trade-offs between the public

health concerns and socio-economic losses rather than a single-

point solution.

In this study, we first use the notion of Pareto optimality

to evaluate the performance of existing policy combinations.

Specifically, for each given date t, we collect the corresponding

value of visitation metric vt and estimate the reproduction

number R
′

t using the SEIRS epidemic model with temporal lagged

effects considered. These two features collectively form the two-

dimensional space, in which the Pareto-optimal set would be

explored. For each Pareto-optimal point obtained, we can figure out

the corresponding control measures implemented on a particular

date for further investigation.

We then explore possible new policy combinations that

might be more effective than the current ones by employing

the non-dominated sorting genetic algorithm II (NSGA-II)

(51) (Supplementary material 8). Specifically, we adopt multiple

regression first to estimate the coefficient for each policy type

in the prediction of R̂t and v̂t during different phases with

temporal lags effects considered. These parameters calculated
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are then fed into the NSGA-II algorithm to generate the

Pareto optimal solutions. Then the solutions with an estimated

R̂t no larger than the maximum mean R
′

t of the existing

optimal policy strategies are further selected. Different from the

implementation of existing policies that are dummy-coded, the

parameter estimated through the generic algorithm for each type

of policy is a continuous variable, which can be interpreted

as the strength of the policy enforcement. According to this,

public health policymakers in each state would be able to create

more refined designs of COVID-19 strategies with expected

effects estimated and make more deliberate decisions regarding

what kind of adjustments shall be made to the current schemes

and how.

3. Results

3.1. Temporal associations between
COVID-19 transmission, mobility, and state
policies

We first map the state government NPIs against the timelines

of mobility and transmission variables to investigate the temporal

associations between them. As shown in Figure 2, state authorities

typically implementedmeasures precisely when the Rt value peaked

and reinstated NPIs when COVID-19 cases reached alarming

levels during subsequent waves. One can also notice that the

mobility level seems to be an indicator of how stringent the

local NPIs are. In the beginning, when the states adopted the

strictest interventions, population mobility experienced a sharp

decline from peak to trough in all the states. Then with the

adjustments of the NPIs and the application of vaccines, the relative

reduction in mobility also changed accordingly. In terms of the

relationships between new infections and human mobility, the

relevant curves in Figure 2 hint at the existence of time-lagged

associations, which will be further investigated through time series

analysis next. Due to space limitations, we provide a detailed

analysis of California, which has the highest number of COVID-

19 cases and a wide range of NPIs. We also highlight key findings

for nine other heavily impacted states as examples in the main text.

Additional findings for other states in the U.S. can be found in the

Supplementary material.

3.2. Temporal lagged relationships between
mobility and viral transmissibility

Based on the preliminary findings, we further investigate

the dynamic temporal lagged relationships between transmission

and mobility variables in a bivariate setting using VAR (45)

and the Granger causality tests (46). After a series of tests

(Supplementary material 5), we then build VAR models with the

Toda-Yamamoto Granger causality test according to Equation 1

and display the results in Table 1. As can be observed, the Granger

causality relationship from Rt to VD is statistically significant at the

1% level during phase 1 in California, but not significant for phase

2. The phenomena can be interpreted as people reacting to the

news about confirmed COVID-19 cases by changing their mobility

patterns significantly in phase 1. This behavioral response, however,

is not that evident after the vaccines were available, hinting at the

fact that people felt more protected by vaccines and less keen on

constraining their movements. To look in the other direction, it

is found that the null hypothesis of no Granger causality from

VD to Rt can be rejected at the 10% significance level during

phase 2, which implies that the visitation change of individuals

Granger causes the transmission of the COVID-19 during the

period of phase 2.

Apart from the variable pair of Rt and VD, the Toda and

Yamamoto causality test is also performed between other possible

pairs of the epidemiological and mobility variables. It can be

observed in the table that bi-directional Granger causality emerged

between variable pairs of (ND, TD) in both phases and pair of (ND,

VD) in phase 2. Moreover, all the test results for ND during phase 2

reject the null hypothesis at the significance level of 1%. For the

corresponding tests between NC and the two mobility variables,

no Granger causality relationship is found at the 1% significance

level. It is also noticeable that the optimal lag lengths selected

according to information criteria for ND and two mobility metrics

are higher than those ofNC of around one to two weeks, whichmay

correspond to the length of treatment.

3.3. Evaluation of existing COVID-19 policy
strategies

The following offers the results of existing optimal solutions

discovered using Pareto approaches in the actual scene. As can

be observed from Figures 3A, B, there are in total two and

three unique Pareto optimal solutions for California in phase 1

and phase 2, respectively. Among them, the state of emergency

(P1) is found to be the only individual policy present in all

the optimal solutions. To discuss by phases, it is interesting to

observe that the closure of restaurants (P4) is the policy type that

distinguishes strategy S4 from S7, connected to a considerable

reduction in R′t , down to 0.769 from 1.206, confirming the relatively

high risks of transmitting the virus during convivial activities

such as dining in a group. However, closing restaurants also

considerably reduces the mobility index, down to -0.393 from -

0.319, confirming the trade-off between the need of containing

the virus and socio-economic vitality. However, when it came

to phase 2, a larger number of enacted control measures did

not guarantee a smaller R
′

t . Instead, the lowest average R
′

t is

generated by a moderate policy strategy S3. In addition, the

slope of the Pareto frontier for phase 2 is greater than that

for phase 1 in California, implying that the increase in R
′

t is

accompanied by a relatively larger recovery of vt when the vaccines

became available.

It should also be noticed that the solutions selected are

considered equally good according to the Pareto optimality

concept. To decide which solution to choose depends on the policy

makers’ perspectives about the priority of the two objectives in the

optimization task. For instance, if the decision-makers in California

intend to relax policies to some extent so that they have as little as

possible impact on the normal mobility of the residents in phase
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FIGURE 2

Temporal changes in daily new COVID-19 cases (NC), travel distance di�erence (TD), visitation di�erence (VD), instantaneous reproduction number

(Rt) and policy implementation in the ten states with highest number of confirmed cases from February 24, 2020 to August 18, 2021. 7-day moving

average is utilized to smooth volatile case reporting data and human mobility metrics. The start dates of policy implementation and vaccine

distribution are indicated by dashed vertical lines. A horizontal line is drawn at Rt=1. If Rt is greater than 1, the epidemic is expanding at time t,

whereas Rt < 1 signals that the epidemic is shrinking.

TABLE 1 Toda-Yamamoto Granger causality test results for transmission and mobility variable pairs in California.

Phase 1 (Mar.4 2020–Jan.12 2021) Phase 2 (Jan.13 2021–Aug.18 2021)

Direction Lag(m) Lag(m+d) Chi-square Prob. Lag(m) Lag(m+d) Chi-square Prob.

Rt → VD 2 2 16.086∗∗∗ 0.000 9 10 11.680 0.307

VD→ Rt 2 2 2.531 0.282 9 10 16.209∗ 0.094

Rt → TD 2 3 4.544 0.208 8 9 5.687 0.771

TD→ Rt 2 3 1.449 0.694 8 9 5.520 0.787

NC→ VD 9 10 4.565 0.918 8 9 19.714∗∗ 0.020

VD→ NC 9 10 9.258 0.508 8 9 16.648∗ 0.055

NC→ TD 8 9 18.044∗∗ 0.035 8 9 7.689 0.566

TD→ NC 8 9 10.722 0.295 8 9 4.660 0.863

ND→ VD 16 17 13.924 0.672 23 24 51.655∗∗∗ 0.001

VD→ ND 16 17 15.914 0.530 23 24 46.339∗∗∗ 0.004

ND→ TD 23 24 35.936∗ 0.056 20 21 57.509∗∗∗ 0.000

TD→ ND 23 24 46.526∗∗∗ 0.004 20 21 58.966∗∗∗ 0.000

∗∗∗ , ∗∗ , and ∗ indicate the rejection of the null hypothesis at the 1%, 5% and 10% significance levels, respectively. NC represents daily new reported cases. NDmeans daily new deaths. Mobility

variables of TD and VD represent the changes in average travel distance and visits compared to those for the same day of week during non-COVID-19 time period, respectively.

1, the corresponding R
′

t would be as high as 1.206 on average as

solution S4 presents.

3.4. Design of optimal control strategies for
the COVID-19 pandemic

We then explore possible new policy combinations in each

state by employing the NSGA-II (51) and present the optimization

results for California in Figures 3C, D. Here, the parameter

estimated through the generic algorithm for each type of policy can

be interpreted as the strength of the policy enforcement that a value

closer to 1 represents the strength is relatively stronger, whereas

closer to 0 indicates that the implementation of the policy is weaker.

Comparing the optimal solutions generated for phase 1 with

those of the existing policy strategies, the last six potential solutions

are found more optimized than the current optimal solution S4

since they have both smaller R̂t and larger v̂t . This observation

suggests that exploring new possible strategies for better trade-

offs between virus control and the maintenance of mobility is

necessary. Among these six optimal solutions, the NPIs of (P1,
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FIGURE 3

Pareto optimal trade-o�s between human mobility (vt) and virus transmission (R
′

t
) in California during two phases. For existing solutions in phase 1 (A)

and phase 2 (B), purple-colored spots represent optimal solutions that are connected by dashed lines to visually estimate the Pareto frontier.

Candidate points with a value of R
′

t
larger than 2 are filtered. Pareto optimal points with a R

′

t
between 0.7 and 1 are enclosed by green boxes for

phase 1 (A) and phase 2 (B), respectively. Corresponding optimal policy strategies after duplicate elimination are displayed in lower sub-figures with

average R
′

t
and vt listed in the tables beside them. For potential optimal policy strategies generated for California in phase 1 (C) and phase 2 (D),

solutions with a R̂t less than 1.206 and 0.694 are selected, respectively. Corresponding parameters estimated for the policy types are displayed as

heatmaps with predicted R̂t and v̂t listed in the right tables. Orange rectangle highlights the solutions similar to the existing optimal strategies of S7

and S3; and, coral ones highlight more optimized solutions.
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P2, P4, P5, P7, P9) are expected to be implemented together with

strong strengths. In contrast, the closure of non-essential businesses

(P6) seems to be not very necessary, which is in accordance with

the phenomenon observed in the evaluation of existing optimal

strategies previously. The main distinctions between the potential

optimal solutions discovered here from the existing ones for

phase 1 lie in the adoption of P3 and P8. Essentially, the new

proposed optimal solutions put more emphasis on the importance

of closing child care centers (P3) and the flexible adjustment of the

shutdown of bars (P8). While for the design of optimal strategies

for California in phase 2 (Figure 3D), it presents a significantly

different pattern from that for phase 1 (Figure 3C). Specifically,

the overall strength of the policies for phase 2 is relatively weaker,

and the solutions generated are more heterogeneous. In addition,

policymakers in California should also shift the focus of the policy

types to wearing face masks in businesses (P2) and closing bars (P8)

in the later phase.

To provide a clearer picture of how to sketch out the

implementation plans, we then replace policy parameters that fall

within the ranges (0, 0.5) and (0.5, 1) as 0 and 1, respectively.

This simplified version of the optimal policy scheme is shown

in Figure 4, from which we can see that there are five and six

types of optimal policy strategies extracted for phase 1 and phase

2 in California, respectively. Among them, the current solutions

of S7 and S3 are included, while the other nine potential optimal

strategies that may achieve better or equally good performance

compared to the existing ones offer decision-makers a list of

possible alternatives in the fight against COVID-19.

Following the same framework, we conduct analyses for other

states and display their simplified optimal strategies in Figure 4.

From the view of comparisons across space and time, following

major findings emerge: (1) the differences between optimal policy

designs for the ten states studied are evident, indicating the

necessity of adopting differentiated and tailor-made COVID-19

response strategies in each individual state; (2) existing policy

strategies (enclosed by orange rectangles) seldom appear in the

list of new proposed ones, suggesting that there are a considerable

number of alternatives available for COVID-19 prevention beyond

current policy programs; (3) new solutions generated that are more

preferable than the current ones (enclosed by coral rectangles

with smaller R̂t and higher v̂t) show in the first phase of some

states (California, Illinois, and North Carolina), offering potential

solutions that could be considered to replace the existing ones

to policymakers; (4) for each state, two different phases present

widely divergent strategies regarding policy types and amount of

enacting policies. Specifically, the designs for Phase 2 include fewer

policy types and amounts compared to Phase 1 in general, the

phenomenon of which may be explained by the availability of

vaccines in Phase 2 when the control of COVID-19 no longer relies

solely on the NPIs.

4. Discussion

This paper introduces a dynamic modeling framework

designed to support decision-making processes for local

policymakers. Our framework offers flexibility in evaluating

and developing refined COVID-19 policy strategies, emphasizing

the delicate balance between safeguarding public health and

promoting socio-economic vitality. By analyzing shifts in human

mobility, we provide insights into effective policy adjustments

and decision-making. Here tailor-made adjustment schemes and

novel optimal policies in response to the COVID-19 pandemic

are generated for state authorities to choose from, depending on

their priorities and current vaccination status. This can be achieved

through the joint utilization of epidemiological data, mobility

data, NPIs, and in-depth exploration of the dynamic relationships

between them by fusing multiple techniques.

We started with a discussion of the intertwined associations

among the spread of the virus, policy implementation, and human

mobility during different phases and discovered some prevailing

patterns across the states (Figure 2 and Supplementary Figures 2–

5). For instance, the state governments generally began to

implement NPIs when the Rt was at its maximum. In addition,

human mobility can be used as a proxy for NPIs since it dropped

steeply to the lowest level when themost stringent NPIs were issued

in the early stages of the pandemic. Then with the subsequential

relaxation and tightening of NPIs later on, human mobility levels

also changed accordingly. The emergence of COVID-19 vaccines

introduced new variables into these interrelationships. Some states

(e.g., CA, IL, PA, MI, MN, WA, IA, and OR) began to loosen

their NPIs, which coincided with a virus transmission decline and

human mobility increase.

Another key observation that warrants further investigation is

the existence of underlying temporal associations between human

mobility and virus transmission, which might be bidirectional and

dynamic. When adjustments were made to NPIs, human mobility

offered relatively immediate responses while the corresponding

changes in virus transmission would take some extra time to reflect

on confirmed cases. Moreover, the temporal relationships between

virus transmission and human mobility might be bidirectional and

dynamic. For instance, people would adjust their travel behaviors

if they saw a dramatic rise in COVID-19 cases; and the changes

in mobility trends would, in turn, affect the confirmed cases in

a few days. Furthermore, the relationships would also change

with the advent of the vaccines. These observations impel us

to ponder over the temporal associations between mobility and

virus transmission by employing the VAR model and Granger

causality analysis in a phased manner for further investigation.

For instance, the results of VAR models prove the existence of

temporal lagged effects as well as Granger causality relationships

between some transmission and mobility variable pairs during

different phases. With regard to the variable pair of (Rt , VD)

that we pay particular attention to, significant Granger causality

relationships are largely discovered in the states affected the most

by COVID-19 in the U.S. (Supplementary Table 7). Here for each

state, at least one direction in one phase offers results that are

significant at the 5% level. In addition, we observe a relatively

stronger Granger causality relationship between ND (death count)

and mobility patterns compared to that of NC (daily infections),

which aligns with findings from previous studies (52–54). These

studies have highlighted the use of death count as a more

reliable metric, considering that the actual number of infected

cases is expected to be significantly larger than reported. These

findings deepen our understanding of the transmission dynamics

of COVID-19 and human behaviors by revealing the intricate
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FIGURE 4

Optimal response strategies generated by NSGA-II for 10 states with the highest number of confirmed COVID-19 cases during di�erent phases.

Strategies for each state are listed in ascending order of the average predicted R̂t. If more than five optimal solutions are distilled for a certain state

and phase, only the top five strategies are retained. Orange rectangles mark solutions already included in the existing strategies for the state; and,

coral rectangles highlight more optimized ones.

temporal associations between them. This knowledge enables more

comprehensive policy-making that considers the temporal effects,

leading to more effective strategies.

We then evaluate the performance of existing policy strategies

across the states using Pareto analysis, so as to offer policymakers

a lens for looking back to identify effective policy combinations

and adjust less effective ones in the future. For the pre-

vaccine stage, to measure the contribution of policy types to

health-economic balance individually, state of emergency (P1) and

wearing face masks (P2) show as the most important NPIs that

they appear in all the optimal strategies among the top ten states

(Supplementary Table 8). The closure of recreational services (P8,

P5, P9, P4) comes next with moderate impact, while essential

businesses (P6) and child care centers (P3) do not present in any

of the optimal strategies. From the perspective of the policy mix,

the co-activation of P1 and P2 accounts for the largest proportion

(30%) and is presented in the optimal strategies for six states (TX,

FL, IL, GA, OH, NJ). The secondmost frequent policy combination

is (P1, P2, P8), which accounts for 25% of the optimal strategies.

This observation implies the importance of ordering bars to close

in the COVID-19 fight when vaccines have not been authorized for

use. The reason why the closure of bars plays a more significant role

in achieving the optimal status than other types of entertainment

venues may be due to the fact that the social atmosphere in bars

tends to be more lively, mixed, and closer with a relatively shorter

social distance. This finding implies that paying closer attention to

the control of gathering sites where social scenes are more complex

(e.g., bars) is particularly necessary before the advent of vaccines.

Then when the COVID-19 vaccines were available, the percentage

of each policy type shown in the optimal strategies decreased in

general (Supplementary Table 9). However, from a ranking view,

what does not change compared to Phase 1 is that the most effective

individual policy types are still P1, P2, and P8. In terms of the policy

combinations, there are two most dominant strategies, namely (P1,

P2) and enacting P1 only. Both of the strategies account of 27% and

present in six states out of the ten.

Finally, we employ the NSGA-II algorithm to generate new

optimal policy strategies. Here, the results reveal substantial

differences between different phases and states, highlighting

the necessity of designing spatio-temporal tailor-made

policy strategies. For instance, wearing face masks (P2) is

particularly important for all the states in the pre-vaccine period

(Supplementary Figures 8–16). However, this is not the case

in the later phase. The policy type of closing restaurants (P4)

is essential for FL and NJ in phase 1, but not that important

for the states of TX, NY, PA, and NC. By considering the

state-tailored temporal lag effects in Granger causality tests

and regression analyses in a phase-wise manner, we provide

policymakers with a spatio-temporal context-aware guiding

policy formulation reference. It also enables them to compare

the expected effects of potential optimal solutions with the

performance of existing strategies and make more deliberate
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decisions regarding what kind of adjustments shall be made to

the current schemes and how. Moreover, the implementation

strategies proposed by our framework are more fine-grained

than the existing ones. This is reflected in the strengths of policy

enforcement as outputs for decision-makers. Furthermore, our

framework also offers sophisticated implementation strategies

that produce the strengths of policy enforcement as outputs for

decision-makers.

Our study has several limitations. First, we mainly focus on

NPIs implementation in the regions with the most confirmed cases,

since they play a more crucial role in combating the COVID-

19 pandemic. However, an in-depth analysis of areas with fewer

cases may raise other intriguing questions, such as why they

performed relatively better in the fight against COVID-19. This

sort of exploration may lead to a deeper understanding of how

to improve the combined power of NPIs or offer novel insights

into reasons for the effectiveness of control measures varying

considerably across regions. This future investigation may require

the additional use of demographic data, which can also help

reveal the underlying logic of the results we have obtained. In

addition, we only consider public health and humanmobility as two

primary objectives in the optimization of this study. Other socio-

economic costs due to COVID-19 pandemic like psychological

distress, economic recession, job losses, increased government debt,

and social unrest can be discussed in future work. It is also

important to note that the specific socio-economic costs can vary

across countries and regions, and further research can provide a

more comprehensive understanding of the impact of COVID-19

on different aspects of society and the economy. One additional

limitation of this study is the absence of specific data on the

composition of viruses in each state during the observation period.

Consequently, we were unable to account for the variations in

virus composition. Instead, our study focuses on comparing the

optimized combinations of different policies and their potential

effects on various variants. Although the precise timing of these

effects may differ across variants, conducting more comprehensive

analyses for each variant would be an intriguing avenue for

future research.

In conclusion, we provide detailed insights into the spatio-

temporal dynamics of the COVID-19 pandemic during different

stages and highlight the essential role of some core intervention

portfolios in controlling the pandemic. The methodology proposed

here can offer policymakers reasoned estimates of the potential

effectiveness of the NPIs to be attained and becomes even more

critical when health systems are facing extreme loads in the U.S.

In addition, the framework presented can be useful for populations

without access to local COVID-19 data and for similar scenarios

in the future involving emerging infectious diseases where relevant

outcomes are not yet available.
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